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New Selection Indices for University Admissions: A Quantile Approach  
 

Mo-Yin S. Tam, Gilbert W. Bassett Jr., Uday Sukhatme  

Abstract.  All universities seek to admit a freshmen cohort of a specified size who 
will be successful in graduating from college.  Previous work has shown a high 
correlation between students' eventual success and their ability to do well in their first 
term.  This objective translates into admitting students whose first term grade point 
average (GPA) exceeds a minimum acceptable level.  Current admissions decisions 
are based however on a selection index that is constructed from a GPA regression that 
estimates expected GPA.  We consider a new approach in which the selection index is 
based directly on the quantiles of the GPA distribution.  The new approach 
realistically assumes that student characteristics have differential impacts at different 
parts of the GPA distribution.  Since impacts usually vary for the low, middle and 
upper parts of the GPA distribution, the quantile approach provides additional 
information. The quantile method also provides admissions officers the flexibility to 
target different GPA properties for the freshman class.  For example, they can directly 
implement a criterion that selects students whose characteristics imply a maximal 
probability of a first term GPA of better than any specified value. We illustrate the 
quantile method by application to actual admission practices at the University of 
Illinois at Chicago. 
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1. Introduction 
 
Consider a university's problem of choosing its freshmen cohort of students from a pool of N 
applicants.  It is desired to select n=rN students from the pool, where (for simplicity) it is 
assumed accepted students actually enroll. In addition the university wants to select students 
who will be successful and graduate.1 Previous work has shown that success is associated 
with achieving a first semester grade point average (GPA) that exceeds a critical threshold, 
call it .0g 2 Students with a GPA<g0 are unlikely to ever graduate and those with a GPA>g0 
are likely to continue to do well in their studies. The selection objective is to admit students 
with a high probability of a GPA greater than g0.  

 
 Let X be a vector of applicant characteristics.  We denote the proportion of applicants 
with characteristics X by h(X). 
 
 Let GPA(X) denote the (random variable), first term grade point average. Let the 
associated cumulative distribution function be denoted by F(z|X). F(z|X) is the probability 
that an applicant with characteristics X would, if admitted, have a GPA≤z. The above 
mentioned success criterion translates into selecting students so that F(g0|X)=Pr(GPA(X)<g0) 
is as small as possible, or Pr(GPA(X)>g0) is as large as possible. 
 

In the admissions literature a selection index has come to be defined as a scoring rule 
mapping applicant characteristics X to some statistic of the GPA(X) distribution. Current 
admission procedure is usually based on an index equal to expected GPA.  Let us denote this, 
SIE(X) (so SIE(X)=E(GPA(X)).3 Students are then admitted if, SIE(X)>g where g is chosen to 
satisfy the enrollment (n=rN) constraint. We will call this mapping from applicants to 
admitted students, SME. While SME maximizes the minimum expected GPA of freshmen 
students (given the enrollment constraint) it need not be consistent with the objective of 
maximizing the chance that admitted students achieve a certain threshold GPA.4    

 
This paper presents a new approach to the admission decision problem. Instead of 

being based on E(GPA(X)) (or on the implicit assumption that X affects GPA in an identical 
way at all parts of the GPA distribution), it is based on explicitly maximizing the chance that 
admitted students achieve g0.  It is derived from a conditional quantile model,5 which is used 
to construct a selection index achieving the target enrollment while maximizing the 

                                                 
1 In many public universities, there might be significant number of students who would leave the university 
when they entered as freshmen in good standing and transfer to another university.  These students would also 
be counted as being successful in college. 
 
2 See Tam and Sukhatme (2002). 
 
3 This is done in many public universities including the University of Illinois, see []. 
 
4 Note that while the threshold GPA described earlier is selected to ensure eventual success of the students, the 
cutoff value of the SI is to picked to satisfy the constraint of the size of the admitted students. 
 
5 For a discussion of the quantile model, see Koenker and Bassett (1978) and Koenker and Hallock (2001).  

 3



probability of success. It does not assume that the impacts of student characteristics are 
constant along the entire GPA distribution.  Hence, it is more general and realistic since 
impacts can vary for the low, middle and upper parts of the GPA distribution.  Since the 
quantile model maximizes the chance of being successful, it exactly captures the intention of 
an admission policy that seeks to admit students whose GPA will be greater than g0. 

 
Section 2 presents the linear quantile and expectation models. In that section, 

attention is restricted to the two characteristics, namely ACT score and high school percentile 
rank (HSPR), which have traditionally been used to construct a selection index.  The models 
are then used to express the corresponding selection indices and selection mechanisms. 
Section 3 presents estimates for the model parameters using the 1994 UIC (University of 
Illinois at Chicago) data, first for the two characteristics mentioned above. The estimation of 
the models is then extended to include a third variable, the average high school ACT score 
(HSACT) as an indicator of the quality of high school.6 Section 4 uses the UIC data to 
illustrate differences in the characteristics of the admitted classes using the alternative 
approaches. Discussion of the results and topics for additional research is in the concluding 
section. 
 
 
2. The GPA(X) Model, Selection Indices, Selection Methods 
 

2.1 GPA(X) Model 
 
Given F(z|X), the associated quantile (inverse) function is denoted by Q(θ|X), 0≤θ≤1. It will 
be assumed that GPA(X) is determined by a linear quantile model,  
 
  Q(θ|X)=α(θ)+ βACT(θ) ACT + βHSPR(θ) HSPR  0≤θ≤1  (1)  
 
The set of possible (ACT, HSPR) comes from a discrete set with ACT values 12, 13,…,36, 
and HSPR takes values, 1,2,…,100. 

 
This quantile specification is more flexible than the more common conditional 

expectation model. With the standard approach the scale of GPA does not vary with the 
quantiles and,  

 
E[GPA(X)] = + ACT + Eα E

ACTβ E
HSPRβ  HSPR    (2) 

 
This model takes the impacts of student characteristics on GPA to be uniform over the GPA 
distribution, identical to the impact at the E(GPA(X). This is a special case of the quantile 
model in which there are no quantile effects, , and 

for all θ. Under the general quantile model the coefficients on ACT and 
HSPR depend on θ. This means the impacts of student characteristics on GPA can vary for 
the low, middle and upper parts of the GPA distribution.   

)(θαα =E E
ACTACT βθβ =)(

E
HSPRHSPR βθβ =)(

                                                 
6  Tam and Sukhatme (2002) find that HSACT has significant impact on GPA. 
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2.2. Selection Indices and Selection Mechanisms 
 

The admission literature refers to a selection index as a mapping from X to some statistic of 
the GPA(X) distribution. Students are then admitted if their selection index value is high 
enough. The standard index is, .  )]([)( XGPAEXSI E =
 

The associated selection mechanism will be denoted by SME. This maps applicants to 
the set of admitted students where: for all admitted students, SIE(X)>sE, and is determined 
so that  

Es

( )

( )
E EX SI X s

nh X r
N>

= =∑ .     (3) 

 
That is, there are n students in the admitted class.  
 
 The selection indices proposed in this paper are based on a different feature of GPA 
than its expected value. We consider a selection index defined by the θ quantile, 

)()( XQXSI θθ = , 0≤θ≤1.  Note that SIθ(X) represents a set of selection indices, one for 
each value of θ.  Each of the selection indices SIθ(X) maps X to the quantile value of GPA 
given by (2).  
 
 The selection mechanism corresponding to the quantiles will be designated by a GPA 
value, g0. SMg0 is defined as the mapping from applicants to an admitted class so that the 
probability of exceeding g0 is as large as possible subject to an entering class of n students. 
This means, Pr(GPA(X)>g0)=1-F(g0|X)=1-θ0 is as large as possible, subject to  

0
0)

( )
X SI X g

nh X r
Nθ >

= =∑ . It is clear that the value of θ0 in the selection index depends on the 

level of the threshold GPA level, g0.  Specifically, the larger the threshold GPA (g0),the 
larger is the value of θ0 [and the smaller is (1-θ0)], or the smaller the probability of exceeding 
g0. 
 
 
3. Conditional Expectation and Quantile Estimates 
 
We use student data of the University of Illinois at Chicago to show how the impacts of 
student characteristics on GPA vary at different points of the GPA distribution. We also 
compare the expectation selection index approach to the quantile selection index .As 
indicated above, we will first consider the two-characteristic (ACT and HSPR) models and 
then extend the analysis to include a third characteristic, HSACT. 
 

Estimates are based on data for the 1994 freshmen cohort of University of Illinois at 
Chicago (UIC).7  UIC is a comprehensive 4-year public university with an undergraduate 
                                                 
7 Fall 1994 data is picked because we would like to trace the eventual success of the admitted students for six 
years since admission.   
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enrollment of about 16,000 students.  Its 1994 freshmen cohort is little over 1,600 students.  
The average ACT score and HSPR of the admitted students in fall of 1994 are respectively 
21 and 74.  
 

3.1 Two-Characteristic Models  
 
The results of the conditional expectation model and quantile regression estimates for the 
two-characteristic models are illustrated in Figure 1. 
 
Figure 1: Expectation and Quantile Model Estimates for the two-Characteristic Models 
(solid curves with dotes indicate the quantile coefficients with corresponding 95% 
confidence; the broken line represents expectation model coefficients)  
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The figure shows that ACT and HSPR have a positive effect on GPA with quantile 
coefficients that vary with θ.  For both the ACT and HSPR variables, they are larger at the 
lower quantiles.  The impacts of student characteristics on GPA are therefore greater at the 
lower GPA levels.  However, the variations are not large and the expectation model 
coefficients are within the 95% confidence intervals for most of the quantile coefficients. 
 
A different view of the coefficients is presented in Figure 2, which shows the  ACT/HSPR 
tradeoffs for SIθ(X) as a function of θ. At the expected value the ratio of 10.8 indicates one 
ACT point is worth about 11 points of class rank for SIE. The tradeoffs at the quantiles vary 
slightly from the expectation, and are largest in the middle of the  
distribution. 
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Figure 2: ACT/HSPR Tradeoffs (solid curves with dotes indicate the 
quantile ACT/HSPR tradeoffs; the broken line represents expectation model 
ACT/HSPR tradeoff)  
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3.2 OTHER CHARACTERISTICS 
 
Other student characteristics and their impact on GPA have been examined in the literature.8  
Tam and Sukhatme (2002) have found that the average high school ACT score (HSACT) has 
significant impact on GPA. 9   In this section we include this variable in the comparison of 
the expectation and quantile estimates, again using the UIC data.  The results are illustrated 
in Figure 3. 
 

                                                 
8 These include studies of the academic rigor of a student’s high school program [Young & Barrett, (1992)], 
academic records [Touron, (1983)], mathematics testing [Haeck, Yeld, Conradie, Robertson & Shall (1997)] 
and district performance indices [Bennett, Wesley & Dana-Wesley (1999)].    
 
9  HSACT is just one of several plausible indicators of high school quality.  Other possible quantitative 
attributes of quality which we do not investigate in this paper include the percentage of students going to 
college and the number of AP (Advanced Placement) courses offered.  
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Figure 3: Expectation and Quantile Model Estimates for the three-Characteristic 
Models (solid curves with dotes indicate the quantile coefficients with corresponding 95% 
confidence; the broken line represents expectation model coefficients)  
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Figures 2 and 3 for the coefficient estimates of the same characteristics are represented on the 
same scale for comparison. Controlling for the impact of high school quality (HSACT), ACT 
has a much smaller impact on GPA. The coefficient estimates for ACT in the three-
characteristic model are roughly half of the value of those in the two-characteristic variable.  
On the other hand, impact of HSPR on GPA increases after high school quality in taken into 
consideration.  However, it remains to be much smaller relatively to the ACT impact.   
 
Among the three characteristics, HSACT has the strongest impact on GPA.  The value of the 
HSACT coefficient estimates is about twice as large as the ACT coefficient estimates and 
about six times as large as the HSPR coefficient estimates. 
 
When quantile coefficient estimates are compared to the expectation coefficient estimates for 
the same variable, the variations of quantile coefficient estimates remain small and the 
expectation model estimate is still within the 95% confidence interval of the quantile 
estimates for ACT when HSACT is included in the models.  For HSPR, however, bigger 
variations of quantile estimates occur in the three-characteristic quantile model compared to 
the two-characteristic one.  Also, the expectation model coefficient estimate for HSPR lies 
outside the 95% confidence interval of the quantile estimates at upper and lower values of θ, 
when HSACT is included in the model.  Even larger variations exist among the quantile 
estimates of HSACT and its expectation estimate is also outside the 95% confidence intervals 
of the quantile estimates at the upper and lower values of θ. 
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4. Comparing Selection Methods  
 
In this section the usual selection index is compared to the quantile-based methods. We 
consider a real-world application and show how the applicants would have differed at UIC if 
the quantile-based methods had been used in place of the standard expectation based 
approach.  
 
 The outcome of a selection method depends on the distribution of characteristics in 
the applicant population. Since ACT and HSPR are traditionally used in the construction of 
SI, we only consider the two-characteristic model.  For the simulation we took the 
distribution of applicant (ACT, HSPR) to be normal, but truncated so that ACT was in 15 to 
36, and HSPR was in in 30 to 100. The parameters of the distribution were calculated so that 
they yield an admitted class (with the standard selection index) whose summary statistics for 
GPA, ACT, and HSPR match the values of the actual admitted class at UIC in 1994.10

 
 We present results for r=.48; similar results were obtained using r=.74, and r=.89. The 
parameters of the conditional expected and quantile models are the ones presented in the 
previous section.  

The base case is SME. The selection index with r=.48 then leads to a selection rule 
such that, SIE=E(GPA(X))>3.0. All students with E(GPA(X))>3.0 are admitted (and those 
with E(GPA)<3.0 are rejected).  

 
Quantile-based selection, SMg is considered for g values of 2.5, 3.0 and 3.5. Each 

achieves the same proportion of admitted applicants, equal to r=.48. The admission target is 
achieved in such a way that an admitted student has, Pr(GPA>g)>(1-θ)  where g is 
alternatively, 2.5, 3.0, 3.5, and (1-θ) is as large as possible. 

 
Table 1 shows, for each g, the quantile value determined by each SMg. For example, 

the .485.515 value in the first column for SM3.0 means, Pr(GPA>3.0)>51.5%, for all admitted 
students. Similarly, the .300 value in the first column for SM3.5 means that 
PR(GPA>3.5)>30%.  The greater the threshold GPA, the lower is the chance of the admitted 
students having GPA above that threshold.  

 
From the point of view of admitting students whose probability of exceeding a g-

threshold is as large a possible the SMg method is optimal, and the SME makes two types of 
mistakes. Comparing the SME with the SM3.5, some students are rejected under SME even 
though their probability of a 3.0 is greater than 51.1%. The other type of mistake occurs 
when students are accepted by SME even though their probability of a 3.0 is below 51.5%. 

 
One measure of the size of these mistakes is shown in the last two columns of Table 

1. The value in the column, Max Pr(SME|Reject), shows the highest probability of exceeding 
g for students who are (incorrectly) rejected by SME. The value in, Min Pr(SME|Accept), 
show the lowest probability for students (incorrectly) accepted.  

 

                                                 
10 The correlation of ACT and HSPR among admitted UIC students was .04 and for the example ACT and 
HSPR were taken to be uncorrelated. 

 9



At the 3.5-threshold, for example, SM3.5 has every student with a better than 30% 
chance getting a 3.5 or better, whereas as SME will admit some students whose chance of 
success is only 29% and reject some students whose chance of success is 35%. 

 
Table 1 

 Optimal Max Pr(SME|Reject) Min Pr(SME|Admit) 
SM2.5 .700 .72 .69 
SM3.0 .515 .65 .50 
SMI3.5 .300 .35 .29 

 
In spite of the differences in Table1, the overall impact on the admitted class using 

SME and SMg is not too large for the UIC example. This is seen in the Table2, which shows 
the extent to which the quantile-based and expectation-based methods result in different 
cohorts of students. The results are similar at the different g values, and only SM3.5 presented.  
It shows the proportions of applicants who are admitted with SM3.5 but rejected by SIE, and 
conversely. (The off-diagonal proportions are not quite identical due to the discrete values of 
ACT and HSPR used for the example). It shows a difference of 1.0% relative to all 
applicants, or about 2% relative t the size of the admitted class, since r=.48.  
 

Table 2 
  Proportions  
  SM3.5  
  Admit Reject  

Admit 0.732 0.010 0.742 

SM
E

Reject 0.013 0.245 0.258 
  0.745 0.255  

 
The small difference reflects the fact that there are not dramatic differences in the 

conditional quantile coefficients as illustrated in Figure 2. It also occurs because the 
probability differences shown in Table 2 tend to occur for only a small proportion of the 
applicant population.   

 
When HSACT is included in the models, bigger variations occur in the conditional 

quantile coefficients for HSPR and HSACT as illustrated in Figure 3.  Hence bigger impact 
on the admitted class is expected using SME and SMg for the three-characteristic model.   
 
 
5. Discussion 
 
The selection methods considered in this paper are defined by the requirement that all 
students meet a minimal GPA standard whether it be an expected or quantile value. Such 
methods may be compared to those designed to achieve objectives for the unconditional GPA 
distribution of the admitted class. This distinction does not usually arise because with the 
standard methods there is no difference.  
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Under SME all admitted students have an expected GPA greater than or equal to  
(and E(GPA(X)<  for all rejected students). It follows that SM

Es
Es E generates an entering class 

of n students with maximal GPA. (Any alternative SM that admits n students requires 
replacing a student whose E(GPA(X)≥  with one whose E(GPA(X)< , thus lowering 
overall GPA). The corresponding situation for the quantiles is more complicated.   

Es Es

 
Let L(z) denote the cumulative GPA distribution of the entering class. (We suppress 

the fact that this distribution depends on r, SM, h, and F(z|X)). This unconditional 
distribution is obtained by integrating GPA over the distribution of characteristics  of 
admitted students . This can be written as, 

L(z)= { ( ) } ( ) ( | )
x

I SI x s h x F z x>∑      (4) 

where I{} is the indicator function.  
 
Consider, SMg, so, F(g|X)>θg for all admitted students. Plugging values into (4) gives 

the resulting GPA distribution of the entering class. Does this yield a class of n students so 
that 1-L(g) is as large as possible? Is there some g' such that SMg' makes 1-L(g) as large as 
possible? 

 
The answer to both questions is, "no". The problem is that the unconditional quantiles 

associated with L cannot be simply expressed in terms of the conditional quantiles associated 
with F(z |X). This does not mean that we cannot maximize 1-L for a given g and r, but that in 
practical applications numerical methods are required. Still, a topic for further investigation 
involves the relation between the selection methods described in the paper and selection 
methods designed to optimize properties of the unconditional GPA distribution of admitted 
students.   
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